

大 綱

- 耐震設計
- 隔、制震簡介
- 常見隔、制震元件
- 隔、制震建築設計案例
- 目前與未來研究發展
  - 智慧型被動阻尼器
  - 自體調諧質量阻尼系統
  - 滾動隔震支承
  - 橡膠隔震元件極限性能
  - 週期性材料隔振設計
- NCREE現有與未來試驗能量

大綱

- 耐震設計
- 隔、制震簡介
- 常見隔、制震元件
- 隔、制震建築設計案例
- 目前與未來研究發展
  - 智慧型被動阻尼器
  - 自體調諧質量阻尼系統
  - 滾動隔震支承
  - 橡膠隔震元件極限性能
  - 週期性材料隔振設計
- NCREE現有與未來試驗能量

建築結構抗震策略



# 大綱

- 耐震設計
- 隔、制震簡介
- 常見隔、制震元件
- 隔、制震建築設計案例
- 目前與未來研究發展
  - 智慧型被動阻尼器
  - 自體調諧質量阻尼系統
  - 滾動隔震支承
  - 橡膠隔震元件極限性能
  - 週期性材料隔振設計
- NCREE現有與未來試驗能量

## 隔、制震建築結構示意





台灣隔、制震建築耐震設計規範沿革

■建築物隔震消能系統設計規範條文、解說及示範例之研訂(1997)

- ■建築物隔震設計規範(2002)
- ■建築物耐震設計規範及解說(2005)

■ 第九章 隔震建築物設計

- ■第十章 含被動消能系統建築物之設計
- 建築物耐震設計規範隔震設計及含被動消能系統設計專章研修與 示範例研擬(2006)
- ■建築物速度型被動消能元件設計手冊之研擬(2007)
- 建築物耐震設計規範及解說 (2011.7)

#### 傳統建築

PGA = 350gal





NARLabs

大綱

- 耐震設計
- 隔、制震簡介
- •常見隔、制震元件
- 隔、制震建築設計案例
- 目前與未來研究發展
  - 智慧型被動阻尼器
  - 自體調諧質量阻尼系統
  - 滾動隔震支承
  - 橡膠隔震元件極限性能
  - 週期性材料隔振設計
- NCREE現有與未來試驗能量

#### 常見隔震元件

橡膠類支承 高阻尼橡膠支承 天然橡膠支承 鉛心橡膠支承 (RB) (LRB) (HDRB) ----滑動類支承 L 摩擦單擺支承 彈性滑動支承 曲面 平面 滾動類支承 L. . 平面與曲面滾動支承 斜面滾動支承 (NCREE 研發) 橡膠類支承(1of3)

#### 天然橡膠支承墊 (Natural Rubber Bearing, RB)

提供勁度,阻尼比約3~5%



橡膠類支承(2 of 3)



橡膠類支承(3 of 3)

滑動類支承(1 of 2)

高阻尼橡膠支承墊 (High-Damping Rubber Bearing, HDRB)

- 阻尼比10~20%或更高
- 大應變時應變硬化
- 最大剪力應變、振動頻率、環境溫度、軸向力及Mullins(或 Scragging)效應影響
- Mullins效應



應變不大於第一次最大應變,應力-應變曲線顯現"軟化" >相同應變下反覆載重,有效剪力模數隨迴圈數增加而遞減

▶ 第一次變形應力-應變曲線是唯一曲線,往後變形若最大



**NARLabs** 

滑動類支承(2 of 2)



NARLabs

滾動類支承





黏彈性制震元件

NARLabs



黏性制震元件 - 單一阻尼係數

**NARLabs** 

黏性制震元件 - 不同阻尼係數



黏性制震元件力學行為





# 大綱

- 耐震設計
- 隔、制震簡介
- 常見隔、制震元件
- 隔、制震建築設計案例
- 目前與未來研究發展
  - 智慧型被動阻尼器
  - 自體調諧質量阻尼系統
  - 滾動隔震支承
  - 橡膠隔震元件極限性能
  - 週期性材料隔振設計
- NCREE現有與未來試驗能量

## 台灣隔震設計應用實績(1of2)





台聯工程顧問公司、潤弘精密工程事業股份有限公司 提供

## 台灣中間樓層隔震應用案例介紹



科建聯合結構技師事務所 提供



中間樓層隔震建築設計注意事項 NARLabs



NARLabs 台灣摩擦單擺隔震支承應用案例(1 of 2)

樓層數:B4F~21F 樓高:93.20m 隔震器位置:B4F底 隔震器:摩擦單擺支承(48)



傑聯國際工程顧問有限公司 提供



台灣隔震建築發展



NARLabs

日本隔震建築物於311地震之性能檢討



25%發生隔震伸縮縫與隔震層非結構構件損壞

# 日本高樓隔震設計應用實績

| 樓層數:B1F~50F<br>樓高:177.40m<br>隔震器位置:B1F底<br>最大高寬比:5.7 |             |                 |              |                               |                    |                   |                          |               |  |  |  |  |  |
|------------------------------------------------------|-------------|-----------------|--------------|-------------------------------|--------------------|-------------------|--------------------------|---------------|--|--|--|--|--|
| 耐震性能目標                                               | 地           | 免震材料            |              |                               |                    |                   | 上部構造                     | 下部構造·杭        |  |  |  |  |  |
|                                                      | 震動レ         | 積層ゴム            |              |                               | 弾 性<br>べり支         | すず                | 部材応力                     | 部材応力          |  |  |  |  |  |
|                                                      | ベル          | せん断<br>ひずみ*1    | 引張<br>面圧     |                               | 水<br>移動            | 平量                | 層間変形角                    | 状態            |  |  |  |  |  |
|                                                      | ンベ ナ 1      | 300%<br>以下      | _            |                               | 7 <b>5cm</b><br>以下 |                   | 短期許容<br>応力度以下<br>1/400以下 | 短期許容<br>応力度以下 |  |  |  |  |  |
|                                                      | レイチ酸        | 300%<br>純下      | 1N/mm²<br>感下 |                               | 75cn               | n<br>,            | 降伏耐力<br>以下<br>」          | 降伏耐力<br>- 織厚  |  |  |  |  |  |
|                                                      | \$9         |                 | 8            | (1996).<br>(1996).<br>(1996). |                    | inik<br>1999) Mar |                          | 80m           |  |  |  |  |  |
|                                                      |             | 23.0<br>1530/15 |              | 20                            |                    |                   |                          | 2996          |  |  |  |  |  |
|                                                      | (Concine)   |                 |              | 4.20                          |                    |                   | 8.88                     | 7.87          |  |  |  |  |  |
|                                                      | 22014(1)(2) |                 |              | 4.98                          |                    |                   | 6.04                     | 1,65          |  |  |  |  |  |



## 日本高科技廠房隔震設計案例 (FUJITSU Mie Tourism Factory in Japan)



### 核能設施應用隔震技術發展簡介

#### Light water reactor (GEN II) - stiff structures and rigid components <u>Completed</u>

■ 4 PWR at Cruas, France, 1978, 1983-1984, neoprene bearings (500x500x66mm)

■ 2 PWR at Koeberg, South Africa, 1976, 1984-1985, neoprene bearings (700x700x130mm) Under construction

Jules Hotrowitz Reactor(JHR) at Cadarache, France, neoprene bearings (900x900x181mm)





台灣黏彈性制震元件應用案例



聯邦工程顧問公司 提供

**NARLabs** 

台灣黏性制震元件應用案例(1 of 2)



聯邦、永峻工程顧問公司 提供

台灣黏性制震元件應用案例(2 of 2)



NARLabs

#### Damper woffle slab ¶₽E / |←→| 伸縮縫 25CM(typ.) Shell structure 1///// cleanroom sub fab Interior structure process support Viscous Damper Shell Structure Interior Structure

台灣半導體廠房抗震措施(1of2)









永峻工程顧問公司 提供

NARLabs

## 大 綱

- 耐震設計
- 隔、制震簡介
- 常見隔、制震元件
- 隔、制震建築設計案例
- 目前與未來研究發展
  - 智慧型被動阻尼器
  - 自體調諧質量阻尼系統
  - 滾動隔震支承
  - 橡膠隔震元件極限性能
  - 週期性材料隔振設計
- NCREE現有與未來試驗能量

#### 智慧型被動阻尼器研發 (1 of 3)

- 利用掺入奈米粒子之高分子聚合物流體取代傳統牛頓流體
- 物理特性隨著流體之剪應變率而改變
- STF: Shear Thickening/Thinning Fluid







# 大 綱

- 耐震設計
- 隔、制震簡介
- 常見隔、制震元件
- 隔、制震建築設計案例
- 目前與未來研究發展
  - 智慧型被動阻尼器
  - 自體調諧質量阻尼系統
  - 滾動隔震支承
  - 橡膠隔震元件極限性能
  - 週期性材料隔振設計
- NCREE現有與未來試驗能量

**NARLabs** 

自體調諧質量阻尼系統(BMD)設計理念



自體調諧質量阻尼系統(BMD)



# 自體調諧質量阻尼系統(BMD)之 **NARLabs** 最佳化設計策略 (1 of 2)



自體調諧質量阻尼系統(BMD)之

最佳化設計策略 (2 of 2)



大綱

- 耐震設計
- 隔、制震簡介
- 常見隔、制震元件
- 隔、制震建築設計案例
- 目前與未來研究發展
  - 智慧型被動阻尼器
  - 自體調諧質量阻尼系統
  - 滾動隔震支承
  - 橡膠隔震元件極限性能
  - 週期性材料隔振設計
- NCREE現有與未來試驗能量

滾動隔震支承(1of2)



滾動隔震支承(2 of 2)



## 與其他設備物隔震技術比較

NARLabs



加速度(g)

0.6

0.3

30

35

40

45

加速度(g) 0 -0.3 -0.6

振動台試驗驗證

THINK C. UNNI

**NA** 



50 時間 (sec)

55

60

65

70









# 大 綱

- 耐震設計
- 隔、制震簡介
- 常見隔、制震元件
- 隔、制震建築設計案例
- 目前與未來研究發展
  - 智慧型被動阻尼器
  - 自體調諧質量阻尼系統
  - 滾動隔震支承
  - 橡膠隔震元件極限性能
  - 週期性材料隔振設計
- NCREE現有與未來試驗能量

### 橡膠隔震元件極限性能



# 大 綱

- 耐震設計
- 隔、制震簡介
- 常見隔、制震元件
- 隔、制震建築設計案例
- 目前與未來研究發展
  - 智慧型被動阻尼器
  - 自體調諧質量阻尼系統
  - 滾動隔震支承
  - 橡膠隔震元件極限性能
  - 週期性材料隔振設計
- NCREE現有與未來試驗能量

NARLabs

週期性材料應用於結構隔振 (1 of 2)



週期性材料應用於結構隔振 (2 of 2)



Test setup for 1-D periodic foundation

綱 大

- 耐震設計
- 隔、制震簡介
- 常見隔、制震元件
- 隔、制震建築設計案例
- 現今與未來研究發展
  - 智慧型被動阻尼器
  - 自體調諧質量阻尼系統
  - 滾動隔震支承
  - 橡膠隔震元件極限性能
  - 週期性材料隔振設計
- •NCREE現有與未來試驗能量

NCREE現有與未來試驗能量



### NCREE現有試驗設施 (振動台、反力牆、強力地板)



## NCREE現有試驗設施 多軸向測試系統 (MATS)





最大垂直向出力: 6000 ton 最大水平向衝程:±1200 mm

## NCREE現有試驗設施 多軸向測試系統 (MATS)



## NCREE現有試驗設施 減震消能元件測試系統

### NARLabs



## NCREE第二實驗設施



NCREE第二實驗設施

長衝程高速振動台

✓ 可模擬近斷層地震
✓ 可進行三向地震試驗
✓ 可模擬六個自由度運動



|                        | Shaking Table Specification       |                 |                       |                  |                       |  |  |  |  |
|------------------------|-----------------------------------|-----------------|-----------------------|------------------|-----------------------|--|--|--|--|
| Location               | Table size Max. Disp.<br>(m) (mm) |                 | Max. Vel.<br>(mm/sec) | Max. Acc.<br>(g) | Max. payload<br>(ton) |  |  |  |  |
| Taipei<br>Headquarters | 5 x 5                             | H±250<br>V±100  | H±1000<br>V±500       | H±1.0<br>V±1.0   | 50                    |  |  |  |  |
| Tainan<br>Branch       | 8 x 8                             | H±1000<br>V±400 | H±2000<br>V±1000      | H±1.2<br>V±0.8   | 100                   |  |  |  |  |

NCREE第二實驗設施

雙向測試系統 (BATS)

- 1. 最大水平向衝程:±1200 mm
- 2. 最大水平向出力:±400 ton
- 3. 最大水平向速度:±1000 mm/sec
- 4. 最大垂直向壓力:6000 ton
- 5. 最大垂直向速度:150 mm/sec
- 6. 最大垂直向拉力:800 ton



